Intraperitoneal Chemotherapy for Stage IV Gastric Cancer

Andrew M. Blakely, MD

November 7, 2020
Outline

• Rationale for catheter-based intraperitoneal chemotherapy

• Comparison to other intraperitoneal treatment approaches

• Clinical trial at the National Cancer Institute

• Future directions
Clinical Need

• Cytoreduction and HIPEC are reserved for low-volume disease

• However, many patients will present with more extensive disease

 • Some may become candidates for CRS/HIPEC after effective treatment
Why an Intraperitoneal Approach?

- **IV CDDP 100 mg/m²**
 - Plasma: Low
 - Peritoneal fluid: Moderate

- **IP CDDP 90 mg/m²**
 - Plasma: Low
 - Peritoneal fluid: High
Rationale for Catheter-Based Chemotherapy

• Allows for use of chemotherapy drugs that:

 • Do not require heat to improve efficacy

 • Are cell-cycle specific
Chemotherapeutic Agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Molecular weight</th>
<th>Type</th>
<th>AUC ratio</th>
<th>T1/2 (mins)</th>
<th>T90% (mins)</th>
<th>Dose</th>
<th>Carrier solution</th>
<th>Incompat-ability in solution</th>
<th>Heat synergy</th>
<th>Heat stability</th>
<th>Depth of penetrative</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doxorubicin</td>
<td>579.99</td>
<td>Antitumor antibiotic</td>
<td>230</td>
<td>20</td>
<td>80</td>
<td>15 mg/m²</td>
<td>1.5% dextrose dialysis solution</td>
<td>Heparin, fluorouracil</td>
<td>Yes</td>
<td>42 °C</td>
<td>4-6 cell layers</td>
<td>4-6 cell layers</td>
</tr>
<tr>
<td>DOXIL (liposomal doxorubicin)</td>
<td>579.99</td>
<td>Antitumor antibiotic</td>
<td>1,040</td>
<td>180</td>
<td>NA</td>
<td>100 mg/m²</td>
<td>1.5% dextrose dialysis solution</td>
<td>Heparin, fluorouracil</td>
<td>Yes</td>
<td>42 °C</td>
<td>4-6 cell layers</td>
<td>4-6 cell layers</td>
</tr>
<tr>
<td>Etoposide</td>
<td>588.58</td>
<td>Antitumor antibiotic</td>
<td>65</td>
<td>NA</td>
<td>NA</td>
<td>25-350 mg/m²</td>
<td>5% dextrose</td>
<td>Plastic devices; acryls; antibiotics</td>
<td>Yes</td>
<td>42 °C</td>
<td>NA</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>5-fluorouracil</td>
<td>130.08</td>
<td>Anti-metabolite</td>
<td>280</td>
<td>30</td>
<td>75</td>
<td>650 mg/m² (x5 days)</td>
<td>0.9% sodium chloride; 1.5% dextrose dialysis solution</td>
<td>Icodextrin</td>
<td>Minimal</td>
<td>43 °C</td>
<td>2,000 µm</td>
<td>NA</td>
</tr>
<tr>
<td>Flururidine (FUDR)</td>
<td>246.2</td>
<td>Anti-metabolite</td>
<td>75</td>
<td>NA</td>
<td>NA</td>
<td>500 mg/m² twice daily (x3 days)</td>
<td>0.9% sodium chloride</td>
<td>NA</td>
<td>Minimal</td>
<td>43 °C</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>299.5</td>
<td>Pyrimidine antagonist</td>
<td>205</td>
<td>40</td>
<td>75</td>
<td>1,000 mg/m²</td>
<td>0.9% sodium chloride</td>
<td>NA</td>
<td>At 48 hours</td>
<td>42.5 °C</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Iromotecan</td>
<td>677.19</td>
<td>Antitumor antibiotic</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>200 mg/m²</td>
<td>1.5% dextrose dialysis solution</td>
<td>NA</td>
<td>No</td>
<td>44 °C</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Melphalan</td>
<td>305.2</td>
<td>Alkylator</td>
<td>56</td>
<td>33</td>
<td>69</td>
<td>70 mg/m²</td>
<td>0.9% sodium chloride</td>
<td>NA</td>
<td>Marked</td>
<td>42 °C</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>334.3</td>
<td>Antitumor antibiotic</td>
<td>27</td>
<td>40</td>
<td>90</td>
<td>15 mg/m²</td>
<td>1.5% dextrose dialysis solution</td>
<td>Bleomycin</td>
<td>Yes</td>
<td>42.5 °C</td>
<td>2,000 μm</td>
<td>NA</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>517.41</td>
<td>Antitumor antibiotic</td>
<td>115-255</td>
<td>NA</td>
<td>NA</td>
<td>28 mg/m²</td>
<td>0.9% sodium chloride; lactated Ringer’s solution</td>
<td>Heparin</td>
<td>Yes</td>
<td>43 °C</td>
<td>5-6 cell layers</td>
<td>NA</td>
</tr>
<tr>
<td>Pemetrexed</td>
<td>471.4</td>
<td>Multitargeted antifolate</td>
<td>70</td>
<td>90</td>
<td>260</td>
<td>500 mg/m²</td>
<td>1.5% dextrose dialysis solution</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>371.25</td>
<td>Alkylator</td>
<td>10</td>
<td>NA</td>
<td>NA</td>
<td>300 mg/m²</td>
<td>0.9% sodium chloride</td>
<td>NA</td>
<td>Yes</td>
<td>41.5 °C</td>
<td>0.5 mm</td>
<td>NA</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>300.1</td>
<td>Alkylator</td>
<td>10</td>
<td>30</td>
<td>90</td>
<td>90 mg/m²</td>
<td>0.9% sodium chloride</td>
<td>NA</td>
<td>Yes</td>
<td>41.5 °C</td>
<td>1-3 mm</td>
<td>NA</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>397.3</td>
<td>Alkylator</td>
<td>16</td>
<td>40</td>
<td>60</td>
<td>460 mg/m²</td>
<td>5% dextrose</td>
<td>Aluminum alkaline or NaCl</td>
<td>Yes</td>
<td>46 °C</td>
<td>1-2 mm</td>
<td>NA</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>853.9</td>
<td>Antimiotic</td>
<td>1,000</td>
<td>NA</td>
<td>NA</td>
<td>120-180 mg (total dose)</td>
<td>1.5% dextrose dialysis solution; 6% hetastarch</td>
<td>Plastic containers and tubes</td>
<td>No</td>
<td>42.5 °C</td>
<td>>80 cell layers</td>
<td>PA</td>
</tr>
</tbody>
</table>
Why Paclitaxel?

- High molecular weight, hydrophobic
- Targets cells that are actively dividing
- Effects are seen as early as 6 hours, last as long as 72 hours
- Ideal agent for bidirectional therapy
Rationale for Bidirectional Therapy

• Treat peritoneal nodules using intraperitoneal and intravenous drugs

• IV chemotherapy is thought to diffuse into the peritoneal space
 • Leakage facilitated by the increased vascularity of tumor nodules

• Co-administration of IP chemo injures or collapses blood vessels
 • This leads to increased cell death in the outer layers of the nodules
Intraperitoneal Chemotherapy: Advantages

Catheter-Based
- Does not require the OR
- Can be given with IV chemo

Laparoscopy-Based
- Ability to control perfusion
- Can augment with heat
Intraperitoneal Chemotherapy: Disadvantages

Catheter-Based
- Inability to control perfusion
- Cannot augment with heat
- Catheter-related complications

Laparoscopy-Based
- Does require the OR
- Timing offset with IV chemo
Prior Experience in Gastric Cancer

<table>
<thead>
<tr>
<th>Author</th>
<th>Trial Design</th>
<th>Intervention</th>
<th>Recommended Dose</th>
<th>Accrual</th>
<th>Toxicity</th>
<th>Treatment Response</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishigami, H. et al (2009)</td>
<td>Phase 1</td>
<td>PAX (IP/IV) S-1 (PO)</td>
<td>PAX IV 50mg/m²
PAX IP 20mg/m² S-1 PO 80mg/m²/day</td>
<td>n = 9</td>
<td>Dose level 1 - n = 4 grade 3/4 (leukopenia/neutropenia)
Dose level 2 - n = 4 grade 3 (leukopenia/neutropenia/diarrhea)</td>
<td>6/7 patients converted to negative cytology</td>
<td>N/A</td>
</tr>
<tr>
<td>Kurita, N. et al (2011)</td>
<td>Phase 1</td>
<td>PAX (IP) S-1 (PO) Gastrectomy</td>
<td>PAX IV 40mg/m² S-1 PO 80mg-100mg/day</td>
<td>n = 18</td>
<td>Dose level 2 - n=1 grade 3 (leukopenia)
Dose level 5 - n=2 grade 3 (leukopenia)</td>
<td>2/18 patients converted to negative cytology, 2/18 PR, 15/18 SD</td>
<td>Median OS 11mo</td>
</tr>
<tr>
<td>Ishigami, H. et al (2009)</td>
<td>Phase II</td>
<td>PAX (IV/IP) S-1 (PO)</td>
<td>PAX IV 50mg/m²
PAX IP 20mg/m² S-1 PO 80mg/m²</td>
<td>n = 40</td>
<td>Grade 3/4 - leukopenia (18%), neutropenia (38%), anemia (10%), Anorexia (5%), N/V (8%), diarrhea (3%)</td>
<td>24/40 patients converted to negative cytology, 10/40 PR, 6/40 SD</td>
<td>1-yr OS 78%, Median OS 22.5mo</td>
</tr>
<tr>
<td>Imano, M et al (2012)</td>
<td>Phase II</td>
<td>PAX (IP) One Dose PAX (IV) S-1 (PO)</td>
<td>PAX IV 80mg/m²
PAX IP 80mg/m² S-1 PO 80mg/m²/day</td>
<td>n = 35</td>
<td>Grade 3/4 - anemia (5.7%), leukopenia (8.6%), neutropenia (22.8%), ALT elevation (5.7%)</td>
<td>15/22 reduction in gastric wall thickening 1/8 Target Lesion CR 1/7 Target Lesion PR</td>
<td>1yr OS 68.6%, Median OS 21.3mo</td>
</tr>
<tr>
<td>Yamaguchi, H et al (2013)</td>
<td>Phase II</td>
<td>PAX (IP/IV) S-1 (PO)</td>
<td>PAX IV 50mg/m²
PAX IP 20mg/m² S-1 PO 80mg/m²</td>
<td>n = 35</td>
<td>Grade 3/4 - neutropenia (34%), leukopenia (23%), anemia (9%)</td>
<td>5/7 Target Lesion OR 28/35 converted to negative cytology</td>
<td>1yr OS 77.1%, 2yr OS 44.8%, Media OS 17.6mo</td>
</tr>
</tbody>
</table>
Clinical Question:

Can we replicate the successes reported in previous studies?
Clinical Trial Objectives

• To evaluate bidirectional therapy for peritoneal metastasis

• Assess progression-free survival

• Evaluate ability to downstage patients to be eligible for HIPEC
Protocol Design

Dx Laparoscopy #1
Peritoneal Bx

Dx Laparoscopy #2
IP Catheter

IP, IV paclitaxel
PO capecitabine
X3 Cycles

Dx Laparoscopy #3
Peritoneal Bx

Resectable

Unresectable

IP, IV paclitaxel
PO capecitabine
X3 Cycles

Unresectable, Responding
or Stable

Dx Laparoscopy
Peritoneal Bx

Progressing

End treatment

Resectable

Off treatment

Unresectable

Responding or Stable
Protocol Treatment

Chemotherapy Calendar

<table>
<thead>
<tr>
<th>Cycles 1 and 4</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
</tr>
<tr>
<td>Week 1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 4</td>
<td>✓, #</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 7</td>
<td>✓, #</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Week 9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* = IP paclitaxel; # = IV paclitaxel; ✓ = PO capecitabine

Diagnostic laparoscopy, biopsies (between days 1 and 7)
Inclusion/Exclusion Criteria

Inclusion:
• ≥18 years of age
• Confirmation of GE junction or gastric adenocarcinoma
• ECOG status ≤1

Exclusion:
• Extra-abdominal disease
• Allergy to therapeutic agent
• Prior intraperitoneal therapy
• Existing peripheral neuropathy
Future Directions

• Dose-escalation studies of paclitaxel

• Evaluation of nab-paclitaxel (Abraxane®)

• Identify other IP/IV/PO drug combinations

• Exploration of early or adjuvant IP chemotherapy
Intraperitoneal Chemotherapy for Stage IV Gastric Cancer

Andrew M. Blakely, MD

November 7, 2020